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Abstract-This paper presents an analysis of strong discontinuities in inelastic solids at finite strains.
Solutions exhibiting this type of discontinuities, characterized by a discontinuous displacement field,
are shown to make physical and mathematical sense in a classical multiplicative plasticity continuum
model if the softening modulus is reinterpreted as a singular distribution. Physically, the strain
softening is localized along the discontinuity. Conditions for the appearance of strong discontinuities
in the geometrically nonlinear range are characterized, as it is the response of the material during
localization. In addition, these analytical results are exploited in the design of a new class of finite
element methods. The proposed methods fall within the class of enhanced strain methods, and lead
to solutions independent of the mesh size and insensitive to mesh alignment, without requiring any
regularization of the solutions by numerical parameters like a characteristic length. Copyright
~ 1996 Elsevier Science Ltd.

I. INTRODUCTION

The analysis of strain localization in inelastic materials has received an important amount
of attention in the past, particularly in the last decade, motivated by the interest in the
numerical simulation of the failure of solids. Even though some of the physical and
mathematical issues involved in this problem are already well understood, the problem can
still be considered as open to a large extent, as pointed out recently in Zienkiewicz (1992).
For instance, the presence of strain-softening in the constitutive law is known to be one of
the factors that trigger the inception ofstrain localization. The mathematical inconsistencies
that strain-softening may introduce in a continuum have been well characterized. These
inconsistencies translate at the numerical level in the mesh dependence that finite element
solutions exhibit. As described briefly below, a number of techniques have been proposed
to overcome these inconsistencies, some of them leading to efficient numerical techniques.
However, the appropriate choice seems still a matter of personal preference of the analyst.

Classical analyses of the localization in solids can be traced back to Thomas (1961),
Hill (1962) and Mandel (1966), in connection with the earlier work of Hadamard (1906)
concerned with the study of discontinuities in solids. See also, in this respect, the complete
analyses of Rice (1976), Asaro (1983), Ottosen and Runsesson (1991), and Neilsen and
Schreyer (1993), among others. This approach is based on the consideration of the bifur
cation of an homogeneous solution into a solution involving discontinuous deformation
gradients. Such discontinuities are commonly referred to as weak discontinuities. The analy
sis identifies the loss of strong ellipticity of the governing equations of rate-independent
models as a necessary condition for the appearance of such discontinuous solutions. Lin
earized stability analyses have been proposed for viscous models; see, e.g. Shawki and
Clifton (1989) for a comprehensive review article. Even though experimental results indicate
the formation of very narrow bands, commonly known as shear bands, classical rate
independent plasticity models (like the one described in Section 2.2) do not possess an
intrinsic characteristic length. As noted by Tresca as early as the end of the last century
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[see the historical review of Johnson (1987)], at the macroscopic level it is appropriate to
model the localization of strains by considering the limit case of a surface of discontinuity
of the displacement field. The classical concept of a slip-line, as it appears in rigid-plastic
theories, is then recovered (see, e.g., the classical texts of Hill (1950) or Kachanov (1971)).
The main goal of this paper is the precise characterization of this limit case, referred to as
strong discontinuities, in the context of multiplicative finite strain plasticity.

A number of different approaches have been proposed in the literature that take into
account the above considerations for the modeling of strain localization, with an especial
interest in its numerical solution. A first approach consists of the consideration ofalternative
constitutive models that possess an intrinsic characteristic length, regularizing the problem
in the process. Examples of these ideas are non-local constitutive models (Bazant et al.
(1984)), Cosserat type models (de Borst and Sluys (1991)), and higher-gradient models
(Coleman and Hodgon (1985)), to mention a few representative references. There are a
number of theoretical and practical issues that arise in these cases. Perhaps the most
fundamental one is the actual definition (or rather determination) of the intrinsic charac
teristic length. At a more practical level, the extra numerical cost involved in these for
mulations over more traditional continuum models is sometimes difficult to justify.

A second traditional approach consists of the consideration of a numerical charac
teristic length for the regularization of the numerical simulations involving softening
materials. The standard continuum plasticity model is maintained, and the case of zero
width of the localization band (now a surface) is assumed. However, a finite dissipation is
associated with the deformation along the discontinuity. At the numerical level, more
precisely in the context of the finite element method where the minimum width is determined
by the size of the mesh, the dissipation per unit volume characteristic of a continuum
material model is modified according to the size of the mesh to obtain a fixed and finite
dissipation per unit area. Usually the slope of the (continuum) softening law is modified
according to the mesh size through the introduction of the aforementioned characteristic
length. In the limit, as the mesh size tends to zero, the localization surface is modeled by a
discontinuity exhibiting a finite dissipation. See Oliver (1989) for a precise discussion and
formulation of these ideas. Similarly, the formulation of finite element methods in
corporating special interpolation functions at the element level to capture the localization
of the deformations can be found in Belytschko et al. (1988) and Nacar et al. (1989), to
mention two representative examples.

An alternative approach was presented recently in Simo et at. (1993). The main idea
behind this approach is the consideration of the limit problem, i.e. solutions involving
a discontinuous displacement field (strong discontinuities), in both the analysis and the
development of numerical methods for the simulation of strain localization. Most notably,
the analysis not only identifies the actual condition for the appearance of strong dis
continuities (recovering in fact the loss ofstrong ellipticity condition), but also characterizes
completely the localization mode. It is shown that to make mathematical and physical sense
of the continuum equations a localized softening law along the discontinuity, relating the
(driving) traction andjump ofthe displacement, is to be considered. It is therefore concluded
the existence of a localized dissipation along the discontinuity. Finite element methods
based on these ideas have been presented for the infinitesimal case in this last reference,
Simo and Oliver (1994), and Armero and Garikipati (1995); see also the related work in
Larsson et al. (1995). A complete analysis involving an infinitesimal damage model can be
found in Oliver (1995). The connection of these ideas with the previous approach based on
a numerical characteristic length, as well as discrete crack type models (see e.g. Hillerborg
(1985)), becomes readily apparent. However, the different analytical characterization as
well the completely different aspects involved in the numerical implementation of these
theoretical results are to be contrasted.

We extend in this paper the ideas and results involved in this last approach to the fully
nonlinear finite strain range. The main goal is to extract the information present in a classical
continuum multiplicative plasticity model in order to characterize solutions involving strong
discontinuities. The approach presented herein considers the bifurcation of a smooth initial
solution into a solution involving strong discontinuities. The analysis then proceeds formally
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to make mathematical and physical sense of these equations in the context of distribution
theory. Solutions exhibiting strong discontinuities are shown to be consistent with a rate
independent continuum model if the strain-softening law is understood in the distribution
sense; that is, the softening modulus is a singular distribution (a delta function) along the
discontinuity, meaning physically that the softening response of the material is localized in
a set of measure zero.

It is important to note that a complete characterization of the functional setting of the
problem is still a challenging open problem in the literature. In fact, even for the case of
nonlinear elasticity there are still a number of open issues; see Ciarlet (1988). In the case
of infinitesimal perfect plasticity, a key contribution was presented in Matthies et al. (1979),
where the space of displacement fields with bounded (infinitesimal) deformations, the so
called BD(Q) space, was identified as the functional space where generalized solutions exist.
The analysis considers the variational structure of the problem, as presented earlier in
Duvaut and Lions (1972) and Johnson (1976). Further results along these directions can
be found in Suquet (1978, 1981), Temam and Strang (1980), Anzellotti and Giaquinta
(1982) and Temam (1986), among others. The approach proposed herein is a first formal
attempt to extend these ideas to the finite strain range, and investigate their practical
consequences in the design of finite element methods for the solution of the problem at
hand.

At the numerical level, the main goal is not only the design of efficient numerical
methods that are independent of the size of the mesh, but also the development of methods
that are insensitive to the mesh alignment, despite the strong oriented character that
localized solutions exhibit. The finite element methods proposed herein accomplish these
features by the inclusion of the localization mode identified in the analysis of strong
discontinuities in the actual finite element spaces, without resolving to a regularization of
these discontinuities. The final methods are formulated in the context of the enhanced strain
methodology proposed originally by Simo and Rifai (1990) in the infinitesimal range, and
extended in Simo and Armero (1992) and Simo et af. (1993) to the geometrically nonlinear
case. As a result, the finite element methods proposed herein do not require the introduction
of any extra numerical parameters for a correct simulation of the localization of strains in
inelastic solids.

An outline of the remainder of the paper is as follows. Section 2 defines the problem
under consideration, introducing the notation employed in the rest of the paper as well as
a complete description of the constitutive equations characterizing multiplicative finite
strain plasticity. Section 3 includes the analysis of strong discontinuities in this fully non
linear range. A description of the kinematics of this class of discontinuities as well as the
conditions for their appearance in inelastic solids is presented. A complete characterization
of the localization mode is similarly obtained. These theoretical results are exploited in
Section 4 in the design of a new class of enhanced strain finite element methods. A brief
description of these methods is presented. Section 5 particularizes the above developments
to the model problem of J2-flow theory. A representative numerical simulation is presented
showing the main properties of the proposed methods. Finally, concluding remarks are
drawn in Section 6.

2. PROBLEM DEFINITION

This section describes the governing equations of the problem under consideration.
The notation employed in the rest of the paper is introduced as well.

2.1. Governing equations, notation
Let fJ6 C lR"dim (ndim = 1,2 or 3) be the reference placement of a solid with material

particles denoted by X E.c?I. Let the solid be subjected to a deformation qJ: fJ6 --+ lR"d,m, with
det DqJ > 0 and satisfying the essential boundary conditions qJ = q, on aft c afJ6 for some
given function q,. Denote by P the nominal stress field (first Piola-Kirchhoff stress tensor),
defined by the constitutive relations of the material as described in the following section.
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In this context, the weak forms of the equilibrium equations are given by the usual
expression

(1)

for a given body force field f and imposed tractions t on o,f?4 c of?4. The usual assumptions

ou~ u o,~ = of?4 and ou~ n o,~ = 0,

are considered. The space of test functions Yo is defined as

(2)

(3)

with the appropriate smoothness conditions for (1) to make sense. It is to be noted in this
respect that even for the case of hyperelasticity where there is a complete existence and
regularity theory for cp as a minimizer of the potential energy (Ball (1977)), it is not clear
in what sense the weak Euler-Lagrange equations (1) are satisfied. The reader is referred
to Ciarlet (1988), Section 7.10 forfurther details.

Let r c ~ denote a smooth (C) surface in lR"d,m - I with unit normal N. Assume that
P is everywhere continuous, except perhaps across r. Then, a calculation based on inte
gration by parts in (1) leads to

where [P] denotes the jump of the stresses P across r. A classical argument leads then to
the local (strong) form of the equilibrium equations and natural boundary conditions, i.e.

Div[P] +f = 0 and PN = t on o,f?4,

together with the jump condition

[P]N = 0 on r.

(4)

(5)

This result allows to introduce a well-defined object Tr:= PN on r, which we shall refer to
as the nominal driving traction along r.

2.2. Constitutive relations
This section introduces the constitutive equations considered in the present analysis,

namely, finite strain multiplicative plasticity. A very brief summary of the relations charac
terizing this class of constitutive models is given in Section 2.2.1. The reader is referred to
the comprehensive monograph by Simo (1995) for further details. The elastic rate equations
employed in the forthcoming analysis are derived in Section 2.2.2.

2.2.1. Multiplicative finite strain plasticity. The case of interest corresponds to a rate
independent plasticity model, characterized by the multiplicative decomposition

F = FeFP, (6)

of the deformation gradient F: = Dcp in an elastic Fe and a plastic part FP. In this context,
a general plasticity model is characterized by the following constitutive relations.

i. Hyperelastic response. The elastic response of the material is characterized by a
stored energy function
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(7)

where the dependence on ce follows from a classical argument based on material frame
indifference. The stresses in the material are then given by the relations

(8)

where S is the second Piola-Kirchhoff stress tensor (in the intermediate local configuration
defined by FP), with P = Fes, T being the Kirchhoff stresses. Recall that the Cauchy stresses
(true stresses) (1 are given by (1:= T/J with J:= det F > O.

ii. Yield condition. We consider a model determined by an admissible elastic domain
defined by a yieldfunction of the form

¢(T,q) = (j;(r)+q-rIy :::;: 0, (9)

in terms of the Kirchhoff stresses T and a scalar stress-like internal variable q modeling the
hardening/softening response of the material. Relation (9) represents a typical yield surface
with an initial limit (1y, and a positively homogeneous function ¢(T) of degree one. It is to
be noted that relation (9) is restricted to the isotropic case by frame indifference

(I 0)

where SO(ndim) is the proper orthogonal group, i.e., ¢(T) is an isotropic function of the
Kirchhoff stresses T. We shall restrict the following developments to this case for simplicity.

iii. Plastic evolution equations. The use of the decomposition (6) results in the additive
decomposition

1:=FF- 1 = FeFe-l + FeFPp-1Fe-l = le+IP,
'-<--' ' ,

:= Ie ,= FPLPFe- I := IP

(II)

for the spatial velocity gradient tensor I. The evolution equations of the plastic rate of the
deformation and plastic spin are given in general by

d1' := sym(lP) = A"</>, and wP := skew(lP) = AW, (I 2)

where 0 :::;: Ie E IR the plastic consistency parameter. The symmetric tensor "</> and skew
symmetric tensor ware two given tensors defining the evolution of the plastic deformation
rate and plastic spin, respectively. It is to be noted that both cf1' and wP are objective rates,
so the constitutive relations (I 2) are correctly defined. Typically the plastic spin is assumed
to vanish W = 0; see Mohan et al. (I990), Simo (I995), and references therein. See Dafalias
(I984), and Anand (1985) for examples involving a non-zero plastic spin. We shall restrict
the following developments to the case characterized by

"</> = o,¢(T, q), (I 3)

that is, "</> is the normal to the yield surface. Similarly, we shall consider an associated
hardening/softening law given by

(I 4)

for a hardening/softening modulus H.
iv. Loading/unloading conditions. The elastoplastic model is completely defined then by

the Kuhn- Tucker loading/unloading conditions
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¢ ~ 0, A~ 0, A¢ = 0,

),<p = 0,

(15)

(16)

imposing the persistency of the yield condition under plastic flow.

Remark 2.1. An important consequence of the choice (13) will be used in the forth
coming developments. Since ¢(T:, q) is an isotropic function of T: by (10), the two symmetric
tensors 0", and T: are coaxial. Therefore, these two tensors commute, O",T: is symmetric, and
consequently

0", : WT: = "1> : T:W = 0

for all skew-symmetric tensors WE So(ndim).

(17)

•
2.2.2. Rate form of the elastic constitutive relations. We conclude this section with the

derivation of the rate form of the elastic relations considered above. Taking the material
time derivative of (8)1 and making use of the relation ~te = FeTdeFe, we obtain

(18)

where the material Ce and spatial Ce elastic moduli are defined in components by

(19)

respectively. Given (19), the spatial elastic tangent tensor Ce possesses the minor symmetries

(20)

and the major symmetry

(21)

Expanding the material time derivative in (18h using (8), we obtain the equivalent
expressIOn

(22)

for the elastic Lie derivative of the Kirchhoff stresses.
The elastic rate equations can also be expressed in terms of the elastic Jaumann rate

of the Kirchhoff stresses ¥e, defined as

(23)

where we denotes the elastic spin we
:= skew[ll. Combining this last expression with (19)

leads to the relation

(24)

after some straightforward algebraic manipulations. The spatial tangent ae possesses the
same symmetries (20)-(21) as Ceo
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Remark 2.2. The different character of the yield condition (9) when compared with the
rest of the equations defining the constitutive model should be noted. Namely, (9) is a
pointwise bound on the stresses t" and q. This fact can be easily seen for the case w= 0 by
casting the model in the form of a variational inequality. Using the notation introduced in
this section, and after some straightforward algebraic manipulations, we arrive at the
expressIOn

(25)

where v:= {p is the material velocity, and IE = {(t", q) E § x [R: </J(t", q) ~ O} (with § being the
space of rank two symmetric tensors) is the (pointwise) elastic admissible domain defined
by (9). Note that in this case ¥= ¥e, since wi' == o. The reader is referred to Simo (1995) for
a complete description of the details involved in (25). In particular, the variational principle
underlying (25) corresponds to the classical principle ofmaximum plastic dissipation.

3. STRONG DISCONTINUITIES IN MULTIPLICATIVE PLASTICITY

This section describes the conditions that govern the appearance of strong dis
continuities in the context of the general class ofmultiplicative plasticity models summarized
in the previous section. The approach considered herein follows the classical analysis of
weak discontinuities as a bifurcation problem from a homogeneous deformation state. We
consider, however, the limiting problem involving a strong discontinuity (a discontinuity of
the deformation qJ itself). To this purpose, the kinematics of strong discontinuities in the
finite strain range are described first.

3.1. Kinematics ofstrong discontinuities
Consider an initial deformation ip: fJI --. [R"d;m, assumed smooth in fJI, with a (regular)

deformation gradient F = Dip. We want to investigate the conditions that make possible
the bifurcation of this field to a discontinuous or singular deformation across a smooth
material surface r c fJ6 n [R"d;m - I in a neighborhood Or c fJI of a point Xr EfJI. With no loss
of generality we may assume ip to be homogeneous in Or. Consider then the discontinuous
deformation in Or defined by

(26)

where [qJ] :fJI--. [R"d;m is the jump discontinuity, and H r (X) denotes the Heaviside function
on r, i.e.

{
I if XEOt,

HrCX) = 0
if XEOr.

(27)

Here, ot and Or denote the components of Or on either side of the surface r; see Fig. 1.
Denote by N the unit normal to r (pointing to Ot). It is to be noted that r needs only to
be defined locally in the neighborhood Or. Given the assumed smoothness ofr, there would
be then no loss of generality in restricting the following argument to a plane through Xr
with normal N. Similarly, the decomposition (26) is defined locally. The relations obtained
from this analysis are necessary local conditions for the appearance of strong discontinuities
in solids.
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Fig. 1. Kinematics of strong discontinuities. Local decompositions associated to a strong
discontinuity.

The deformation gradient F corresponding to the deformation q>(X) in (26) is given,
after using a classical result in distribution theory (see, e.g., Stakgold (1979), p. tOO), by

(28)

where br denotes the Dirac delta function on r. We introduce the material jump
J: f!J -4 IRndim , defined by

(29)

With this notation in hand, the singular deformation gradient F in (28) can be written as

F=FF where F:=l+J®Nbr . (30)

This last relation introduces a multiplicative decomposition of the total deformation gradi
ent F in a regular F and singular part F.

The above material description of the discontinuous deformation under investigation
has a spatial counterpart. To this purpose, denote by 'Y = q;(l) the current placement of
the material surface r. Then, the deformation gradient F associated to the discontinuous
mode (3.1) can be decomposed equivalently as

(31)

and where n denotes the normal to the surface 'Y obtained as

(32)
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The vector n is normal to }' at qJ (Xr), but it need not be a unit vector necessarily. Note also
that we can write J1Jr = 1J" where 1J" denotes the Dirac delta function on "and J:= detF > O.

I ( I

The multiplicative decompositions (30) and (31) are illustrated in Fig. I,
The next step is the calculation of the velocity gradient tensor associated with the

bifurcation to the discontinuous mode qJ in (26) from the original smooth deformation ip.
An argument similar to (II) involving the decomposition (30)1 and the material character
of the surface r (i.e., N = 0), leads readily to

1:=FF-IIF~f = FF- 1 +FFF- 1

=FF- 1 +Fi ® F-TN 1Jr

=1+:.e,.[qJ] ® n1Jr

=1+[

where we have introduced the spatial objects

(33)

(34)

Relation (34) identifies :.e,.[qJ] with the Lie derivative of the jump vector [qJ]. A simple
calculation shows the important fact that this object is frame indifferent; that is, given two
observers related by a rigid body motion, we have

(35)

Therefore, we conclude that the appearance of the bifurcation to the discontinuous mode
(26) leads to an additive decomposition (33) of the spatial velocity gradient I in a regular 1
and singular part i on the discontinuity r, the latter being an objective rate tensor (since
both :.e,.[qJ] and n are objective). Outside the discontinuity (i.e., in f!r\O the material is
subjected to the regular velocity gradient i. Remarkably, as in the case of weak dis
continuities characterized by a continuous deformation with a discontinuous deformation
gradient, the difference between the fundamental and bifurcated modes involves a rank one
tensor. However, the singular character on in (34)2 is to be noted.

Remark 3.1. It is important to emphasize once again the local character assumed for
the decomposition (26). Figure I has to be understood in a local sense. For instance, the
two surfaces that may appear after the inception of the discontinuous solution will not be
considered in the actual numerical solutions. Alternatively, a constitutive relation will be
derived for the jump [qJ] modeling the localized response of the material. To this purpose,
the objectivity of the strain rate 2',[qJ] pointed out above will prove to be crucial, as shown
in the next section. •

3.2. Strain localization in multiplicative plasticity
This section investigates the conditions that make possible the discontinuous defor

mation (26) in the general class of multiplicative plasticity model described in Section 2.
To this purpose, the assumptions considered in the analysis are first characterized in Section
3.2.1. The localization condition signaling the appearance of localization is derived in
Section 3.2.2. A complete characterization of the localization mode is obtained in Section
3.2.3.

3.2.1. Basic assumptions. From a theoretical point of view, the two main assumptions
underlying the approach described herein are:

I. The continuum constitutive model prior to localization is able to predict the incep
tion of the localization of the strains.
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2. Moreover, the localization mode is characterized by the rate relations of the con
tinuum model, i.e. persistency of the continuum relations is imposed during local
ization.

It is to be noted that these assumptions are also considered in classical analyses involving
weak discontinuities. Assumption 1 can be found stated explicitly in Rice (1976). Physically,
these assumptions imply that even though the actual physical mechanism controlling the
material response after localization may be completely different than the physical mech
anisms responsible for the response of the solid prior to the bifurcation, localization can be
signaled and described by the relations of the continuum model.

For the case of interest here, involving strong discontinuities with the corresponding
strain rates being singular distributions as described in the previous section, Assumption 2
implies that the continuum rate equations have to make physical and mathematical sense
in general distributional form. To this end, and given the character of the different equations
described in Section 2, we have:

1. To make sense of the pointwise constraint imposed by the yield condition (9) (see
Remark 2.2), the stress-like variables q and the function ~(T) of the Kirchhoff stress
T are (pointwise) bounded functions in Pl. Technically, these functions are ~ (Pl) ;
see e.g. Matthies et al. (1979) for a discussion in the infinitesimal range.

2. Persistency. of the boundedness conditions identified in the previous item implies
that if and </J(T) remain regular functions (that is, they are not singular distributions),
making sense of the consistency condition (16) in the case of plastic flow.

3. Similarly, the nominal traction Tr is continuous by the equilibrium equations, as
obtained in (2.5), and remains bounded. Therefore, t r is not a singular distribution.

The above considerations for the stress-like variables in the model are to be contrasted
with the singular character of the strain rate measures as described in the previous section.
In particular, the plastic consistency parameter determining the plastic rates will be in
general a singular distribution. Note that evolution tensors nq, and iiJ in (12) are bounded
objects depending on the smooth deformation lfJ The case of interest herein involves
localized plastic flow along the discontinuity. We refer to this case as the localization mode
on r, being characterized by

(36)

with ;'r > 0 by (15). The regular part of A is associated to diffusive plastic flow outside the
discontinuity, leading to standard treatments of the plasticity problem. Therefore, and
without loss of generality, this part is assumed to vanish in (36) and in the following
developments.

The goal of the analysis presented in the following sections is to make physical and
mathematical sense of the constitutive relations given the above considerations. The main
objective is to identify not only the conditions that indicate the appearance of the localized
mode defined by (36), but also to characterize completely this mode. In particular, the
evolution of the jump [({'] is of the main interest.

3.2.2. The localization condition in multiplicative plasticity. The first step in the analysis
is to obtain the explicit expression of the evolution of the nominal traction Tron r. To this
end, we note that

t r = PN = [2',.T+ 1T]n = [2'~T-JPT-TJPT +1T]n

= [Cede -JPT-TJPT+IT]n

= [ced-aedP -WT-TWT+IT]n

= [ced + iT]n + [ced - aedP -iiJPr - riiJPT + iT]n ,
~ . (37)

regular singular
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after noting that N is a material vector (i.e. N = 0). Here, the decomposition of the
symmetric strain rate tensor

d := sym [I] = ii+d, where ii := sym [i] and d:= sym [i], (38)

have been introduced after the decomposition (33) of I. Similarly, iF = dI' and wP = wP

given the singular character of A by (36). Impose that t r is a regular function, i.e. the
singular part of (37) must vanish, leading to

(39)

Setting iF = },D¢ and wP = AW, eqn (39) can be written as

It is to be noted that both d and Aare singular distributions proportional to <>r.
Next, the plastic consistency condition (16) leads to

o= ¢ = D¢ : t +q = D¢ : ¥e +q = D¢ : ae (d - dP
) +q

= D¢: aeii+q+D¢: ae(d-iF),
~~

regular singular

(40)

(41)

where the result (17) has been used explicitly. The regularity conditions described in the
previous section allow to identify the regular and singular components of this last
expression. The two parts must vanish individually for the plastic consistency condition to
make sense, leading to

and

D¢: aeii+q = 0, (42)

(43)

for the singular plastic consistency parameter A= Arc5r.
Combining (40) and (43), and nothing that f = Sfv[qJ] @D c5r with d = sym(f), we

conclude that the Sfv[qJ] must satisfy the equation

(44)

where

(45)

with 1 being the rank-two identity tensor. Condition (44) has the classical form of the loss
of(strong) ellipticity condition (see Truesdell and Noll (1965», involving though the acoustic
tensor Qep constructed with the perfect plasticity tangent tensor (the bracketed expression
in (45». In fact, repeating the same argument for the case of Abeing a regular function (i.e.
no localization of the plastic flow), condition (44) is obtained, involving now the elastic
acoustic tensor
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(46)

or, in index notation, Q~k = n;c1k'n,+-ri'nj n//k
. In what follows, we shall assume that the

elastic law does not exhibit the loss of ellipticity, focusing on the localization mode (36)
triggered by the inelastic response of the material.

In summary, a necessary local condition for the bifurcation to a discontinuous defor
mation under the assumptions indicated in the previous section is that the perfectly plastic
acoustic tensor is singular, with 2 v[qJ] belonging to the kernel of Qep

• This condition is the
analog to the result obtained in Simo et al. (1993) for the infinitesimal case. We shall refer
to this condition as the localization condition.

3.2.3. The localization mode. The goal of this section is to characterize the dis
continuous mode of the deformation that may appear when the localization condition (44)
is satisfied for some N (or corresponding n). To this purpose, the hardening/softening law
(14) together with the fact that q is a regular function, as indicated in the previous section,
imply the result

H- 1 q
'-y-J

regular

-ArOr =H- 1 = jj-J Or.
'--------v-----

singular distributlOTI

(47)

That is, distributional softening response localized on the discontinuity surface r is obtained.
See Remark 3.2 below for a justification of the claim that the localized plastic flow must
involve a softening response in these circumstances. The same conclusion has been obtained
in Simo et al. (1993) in the infinitesimal problem, with a direct relation of jj with the energy
expended in the material to create the discontinuity surface ('fracture' energy). The reader
is referred to this last reference for further details.

The regular part of the consistency condition given by (42) leads to the relation

(48)

where tV = aed is the elastic stress response outside the discontinuity r. Therefore, we can
write

(49)

where we have made use of (47). The combination of this equation with (43) implies that
the strength of the rate of the jump (, defined by

is obtained as

2 v [qJ] =: (m with Ilmii = 1, (50)

(51)

Therefore, we conclude that the rate of the jump is given directly in terms of the localized
softening modulus jj, and the elastic evolution of the stresses te outside the band.

Remark 3.2. The localization mode is characterized by elastic unloading outside r,
since the regular part of ). vanishes by (36). The Kuhn-Tucker loading/unloading conditions
(15) can be written equivalently in the classical form nq, : t e :0( 0 in this case. This relation
together with the consistency relation (49) lead to q ~ 0, which together with Ar > 0 implies
that we must have necessarily a negative modulus jj < 0 in (47), implying the softening
response of the material along the discontinuity.
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In summary, this analysis shows that the softening response of the material is localized
on the discontinuity surface, and characterizes, together with the elastic unloading outside
this discontinuity, the jump observed on r. We further assume that the response of the
material after bifurcation to the localization mode continues with these characteristics, on
a fixed material orientation N determined by the initial localization condition (44) and a
localized softening law between Tr with [<p], leading to a stress-displacement relation along
r. See Section 5.1 for a representative example of these considerations.

4. A NEW FINITE ELEMENT METHOD FOR STRAIN LOCALIZATION

Previous sections have characterized the different features of strain localization in
general multiplicative plasticity models. In particular, the localization mode involving the
formation of a strong discontinuity in the deformation <p and corresponding singular
distributions for the strain measures has been identified. The numerical solution of the
problem has then to be able to reproduce these features if a correct simulation of these
phenomena is to be expected. In this respect, two important issues need to be resolved
correctly:

1. The localized softening law (47) together with the evolution equation for the jump
discontinuity (51), leading to a localized dissipation along the discontinuity r, have
to be taken under consideration if a numerical solution independent of the mesh
size is to be obtained.

2. Numerical solutions independent of the mesh alignment require an accurate res
olution of the kinematics of strong discontinuities, as described in Section 3.1. The
inclusion of the singular distributions identified in previous sections in the actual
finite element interpolations (i.e., solving the limit problem consisting of a strong
discontinuity with no smoothing or regularization) appears as a requirement for
this purpose.

Standard Galerkin methods do not meet such conditions, thus leading to a overly
diffuse resolution of the discontinuities with a strong mesh dependence. The method
described below falls within the class of enhanced strain methods proposed originally for
the infinitesimal range by Simo and Rifai (1990), and later extended to the finite strain
range by Simo and Armero (1992) and Simo et al. (1993). The essence of the proposed
technique is a local enhancement of the finite element interpolations that includes explicitly
the localization mode identified in the previous analysis. We present in this section a brief
description of the finite element methods that we are currently developing following these
ideas.

4.1. A class ofenhanced strain methods for localization
Consider a regular finite element triangulation !Jh = u;:~ !.qje of the reference con

figuration!J ::::::: !Jh, as depicted in Fig. 2a. Let <ph E vI. be a finite element interpolation of the
deformation <p = <p(X) satisfying the essential boundary conditions on cu!Jh. Denote by v,7
the associated test functions, defined explicitly by

for the space of complete polynomials pk(!J;) of order ~k. For concreteness, we shall
consider in this presentation the simple setting defined by the above Galerkin interpolations
based on triangular elements for ndim = 2. The method proposed herein extends easily to
general cases involving quadrilateral elements, and general mixed finite elements based on
separate interpolation of the deformation and, for instance, the pressure fields. In fact, the
numerical simulations presented in Section 5 take as base element for the formulation of
the enhanced elements the mixed quadratic triangle P2 81 bubble/PI of Crouzeix and Rav
iart (1973) depicted in Fig. 3a.
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a)

Node (i)

b)

Fig. 2. Finite element interpolations. (a) Regular triangulation of!!J. (b) Discontinuous interpolation
function.

Standard finite element formulations of the type (52) result in a continuous interp
olation of the deformation lfJ. Therefore, they do not possess the localization mode identified
in the analysis presented in Section 3. The key idea of the newly proposed finite element
methods is to introduce this mode by a local enhancement of the deformation gradient,
following (28), as

F; = Grad [lfJh] + F;
~ '--y------J

conforming enhanced

(53)

After the developments of Section 3.1, we define the enhanced deformation gradient F; as

(54)

at the elements f?4;,loc where localization has been detected with the localization condition
(44) for a normal N. In (54), N{!) denotes the normal to the side opposite to node (i)
sustaining the discontinuity r, and h(/) is the corresponding height, as depicted in Fig. 2b.
The enhanced deformation gradient (54) assumes a piecewise constant approximation,
discontinuous across elements of the localization mode (28), with the local element par
ameters OCe E IWdim approximating the spatial jump [lfJ].

Remarks 4.1.
1. The motivation behind (54) can be found in the local decomposition (26), with the

discontinuous part expressed in terms of the discontinuous function

Mr(X) = Hr(X)-l/i(X) in the neighborhood Or C PJ, (55)

instead of the Heaviside function Hr(X) alone, for some continuous function l/Jh
such that Mrlanh = O. A finite element approximation of M r is obtained as

(56)

where NO is the linear shape function

(57)
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for node (i) with reference coordinates XU). The function M~(X) is depicted in Fig.
2b. Noting that Grad [NU)l = -NU)/hU), a simple calculation shows that F~ =

tt:e ® Grad [M~].

2. It is important to emphasize that the construction behind (56) is not to be under
stood as defining an incompatible mode field in flJh. Instead, the proposed method
falls within the class of assumed enhanced strain methods with the introduction of
the enhanced deformation gradient (54). The goal is not to construct a discontinuous
approximation of the discontinuous deformation qJ in (26) following, in particular,
the different surfaces that appear in this case, but rather to enhance the strain
field of the element to capture accurately the localization mode involving singular
distributions, as identified in Section 3.2. In particular, the form of the enhanced
deformation gradient in (54) motivated by the renormalization (55) will be exploited
in the following section for the construction of the enhanced strain variations
satisfying the patch test.

4.2. The enhanced strain variations
The introduction of the local enhanced parameters iXe requires the addition of a new set

of equations to the original weak equilibrium equations (1). Following the ideas originally
proposed in Simo and Armero (1992), the finite element method proposed herein is based
on the weak equations

LP: Grad [,,1 dflJ = Lf· "dflJ+ 1..i4 t ·"dr V"E 1'-,~', )

(58)

f P::fI.~ dflJ = 0 v:fI.~ E ir~ and e = 1,2, ... (localized elements),
~e)O(

for enhanced variations :fI.~ E ir:. Equation (58)1 corresponds to the usual weak statement
of the balance of momentum, imposing weakly the equilibrium of tractions across stress
discontinuities (element boundaries) in particular. On the other hand, the test functions
:fI.Z are designed such that (58h imposes weakly the jump condition (5) across the dis
continuity r. To this end, and motivated by (54), we set

(59)

where Ae is the reference area of the element :?l~,1o" and I~ is the weight assigned to the
integration of the delta function br , that is

(60)

where rz = r UflJZ,loc' One can think of I'i- as the length of the discontinuity line in the
element, but as noted in Remark 4.2.1 below the final formulation is independent of the
parameter I'i-.

The enhanced strain variations (59), satisfy the consistency condition set forth in Simo
and Armero (1992). Namely, constant nominal stress fields are in the solution space (patch
test), since in this case (58)2 is satisfied identically as

(61)

for all localized elements ~~Joc' Furthermore, the spaces irZ generated by (59) and Grad
[1/':1 have null intersection, as required in the aforementioned reference.
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Inserting (59) in (58)2' it follows that this last equation imposes

(62)

where Tr = PNlr;. For the case of a linear triangle, involving constant stresses P at the
element level, this expression reduces to

T r = ~ f PNd98.
e .J4~Joc

(63)

Here, the nominal driving traction Tr is obtained explicitly from the localized softening
law along r in terms of the jump IXe , and the regular stress field P is given by the continuum
constitutive law in 98~Joc\r~. For higher order triangles, Tr is approximated similarly by a
constant field at each element, as conjugate variable to the jump IXe, recovering in this
fashion (63). One can think of performing the integration in the left-hand side of (62) by a
single quadrature point with weight l~. See Remark 4.2.1 and Remark 4.3.1 in this respect.

Remarks 4.2.
1. We note that the basis for the interpolation of the enhanced part of the deformation

gradient (54), and the enhanced variations (59) differ unless (l~/Ae)N = (1/h(i»)N(i).
This situation corresponds to the case when r~ is aligned with one side of the
triangle. This leads to a non-symmetric tangent matrix in the localized elements.
This non-symmetry could have been avoided by choosing the same type of interp
olation (59) in (54). However, the formulation presented herein has shown a sharper
resolution in capturing strong discontinuities, at the price of symmetry for non
aligned meshes. As the numerical simulations presented in Section 5 show, the
proposed approach is able to capture the singular strains with the single band of
elements exhibiting large distortions.

2. Equation (63) and, therefore, the whole formulation is independent ofthe particular
value of the parameter n. This parameter introduces simply a scaling of the weak
eqn (58h The choice l~ = (N' N(i))Ae/h(i) is preferred, since then symmetry of the
linearized equations is recovered in the aligned case, as discussed above.

4.3. Some remarks on the numerical implementation
An important characteristic of the finite element method outlined in the previous

sections is that the delta functions appearing in (54) and (59) are not smoothed out by a
regularization technique, as originally presented in Simo et al. (1993). Instead, these singular
distributions are integrated explicitly, leading to the nonlinear finite element equations.

(64)

Clearly, the consequence of maintaining explicitly br in (59) is translated in the integral
along r~. As indicated in (64), the final implementation is carried out in the current
configuration qJh(98h), where the sparsity of the matrices involved is recovered (see e.g. Simo
and Armero (1992)). In this way, be in (64) denotes the standard (sparse) strain operator
associated to the interpolation of the conforming part in v~, whereas ge is defined from the
regular part of (59) as ge = -(l~/Ae)n.

Linearization of (64) is performed explicitly, carrying material and geometric terms
(details are omitted), leading to a numerical implementation that requires only simple
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modification of existing finite elements. Namely, eqn (64h has to be formed and solved
locally at the elements where localization has appeared. An important feature of the
proposed approach is that no extra numerical parameters, like a characteristic length
common in numerical analyses of the problem at hand, are required. The correct mesh-size
independence of the solution is accomplished by the explicit consideration of the localized
softening law (47) along the strong discontinuity r. Similarly, numerical simulations have
shown the insensitivity of the proposed methodology to the mesh alignment, as the example
in Section 5 illustrates.

Remarks 4.3.
1. As described in Section 4.2, the line integrals along r~ are computed simply as

Jr~(') dr = (.) n, since the integrands are approximated by constant fields at the
element level. Furthermore, the area integrals in (64) do not require a special
quadrature rule as it is the case when a band of finite width is present in the element.

2. The efficient implementation of the proposed method involves the elimination at
the element level of the enhanced parameters IXe through a static condensation. See
Simo and Armero (1992) for further details.

3. Propagation of the discontinuity. The localization condition (44) leads, in general,
to two possible normals n. For instance, in the case of plane strain J2-flow theory
and with the approximation introduced in the following section, the discontinuity
is oriented at ±45° with the maximum principal stress direction. We denote each
of these two possible solutions the IX and the f3lines, following standard convention
in classical slip-line theory (see, e.g., Hill [1950]). When localization has been
detected at one or more quadrature points according to this condition, the element
has the option of exciting these two different modes. A localization mode is excited
if adjacent elements have propagated the discontinuity to the common side, indi
cating in the process the slip-line type (x or f3) that is being propagated. In the
numerical simulations reported in Section 5, the slip-line starts at the material
imperfection introduced in the problem to trigger the bifurcation to the localization
mode. Alternative starting procedures are currently under investigation. Therefore,
the orientation of the discontinuity is not predetermined in the numerical simu
lations, but defined as the analysis progresses. General discontinuity curves are
easily handled with this scheme, without the need ofmeshes devised to accommodate
the discontinuity. In addition, an element can have more than one active localization
mode to model the crossing of discontinuities, if required. The discontinuity is
propagated through as many elements as needed in each load increment. It is to be
noted that this propagation is performed after the convergence for a load increment
is accomplished, thus preserving the asymptotic quadratic rate of convergence
characteristic of Newton schemes. The propagation process is purely geometrical
in nature, and it does not account for any significant extra computational cost.

5. A REPRESENTATIVE MODEL PROBLEM

This section considers the representative model example of plane strain J2-flow theory.
The results obtained in Section 3 are particularized for this case in Section 5.1. Section 5.2
includes representative numerical simulations involving this model problem that dem
onstrate the independence of the proposed finite element method of the size and the
alignment of the mesh.

5.1. Strong discontinuities in plane strain Jrjiow theory
The case of interest, plane strain J2-flow theory, is recovered from the equations

presented in Section 2.2 by setting w== 0 (i.e. no plastic spin) and

¢(7:) = ~II dev [7:]11, (65)

where IIsl1 2 = SirSij' The elastic model assumed in the simulation of Section 5.2 corresponds
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to a regularized logarithmic elastic law (regularized Hencky's law), defined by the stored
energy function

(66)

where {A'], Al} denote the elastic principal stretches (square roots of the eigenvalues of ce)
for this plane strain case, and J:.~ = .r- 1

/
3 A~ for A = I, 2. Note that the yield surface (65)

implies the usual isochoric character of the plastic flow, since

, f3 dev [or]
01> = 07:c/J = ~21Idev[7:]11 (67)

leading to JP = det FP = 1 and, consequently, J = Je = )V.~. In (66), K and J1. denote the
bulk and shear modulus, respectively.

The results presented in Section 3.1 apply directly to this case, in particular, the
localization condition (44) involving the perfectly plastic tangent. A particularly simple
expression of this condition is obtained by noting the different order of magnitude of the
yield limit uy (and, consequently, the stresses dev [7:] and the elastic moduli in metals
uy/J1. ~ 10-3

). Neglecting then small geometric terms of order o(uy/J1.), we conclude as a first
approximation

The approximation in (68) is classical for the problem in hand. Details can be found in
Asaro (1983), together with complete evaluations of the localization condition (44) without
the involvement of the above approximation. The reduced localization condition (68h will
suffice for our purposes. In this case, the condition (68h coincides with its counterpart in
the infinitesimal case. From (67) we conclude

(69)

recovering then the classical concept of a slip-line. Moreover, condition (68) implies that
the slip-line direction 0 bisects the principal stress directions in a first approximation; see
Armero and Garikipati (1995) for details.

Similarly, the expression for the evolution of the jump (51) in the localization mode
can be simplified as follows. Consider the orthonormal basis {M, N} in the reference
configuration f1l, with N being the unit normal determined by the localization condition.
Consider the convected basis {m#, o#} in the current configuration ({'(PA) defined by

a)

R

•
u

--)

b)

• displacement

• displacement
(bierarcblch bubble)

o pressure
(dllCOnlinuOWl)

Fig. 3. Tension test. (a) Problem definition (8 x 3 computational domain). (b) Base element:
P2 EEl bubble/PI, with (7 node) quadratic displacements and discontinuous linear pressure.



Analysis of discontinuities in finite strain plasticity 2881

(70)

where F is the regular part of the defonnation gradient as introduced in Section 3. The
vector m# is not a unit vector necessarily, but it satisfies m# ° n = M ° N = O. A particularly
convenient expression of the jump [({'] is obtained in the convected basis (70) as

(71)

with nonnal ~n and tangential ~m components. The use of the relation (34h leads to the
explicit expression

(72)

for the Lie derivative of the jump. Relation (69) implies ~n = 0, and ~m ~ 0 by (72) and
(51) implying the irreversibility of the localized flow (the vector M is assumed in the
direction of the slip). Equation (51) implies then

(73)

Define the resolved shear stress (the "Schmid stress") as

(74)

A calculation using relations (70) and (74) results in

(75)

see Asaro (1983). Neglecting small geometric tenns of order o«(Jr/Jl), relation (73) implies
as a first approximation the softening law

(76)

for some general softening modulus If = If(~m)' This law relates the rates of resolved shear
stress t m with the rate of slip ~m, and is, therefore, an objective relation. As noted in Section
3, after localization the material direction N is assumed fixed, with the softening law
assumed along the discontinuity. The classical Schmid law is, therefore, effectively recovered
in this case. The reader is referred to the comprehensive review article by Asaro (1983) for
further details.

Remark 5.1. The finite element method described in Section 4 approximates the jump
[({'] by lXe E ~2 at the element level. In the present case, however, the nonnal component of
the jump vanishes by (69). In the numerical simulations presented in the following section,
this constraint is regularized by penalization as

Tn,=noTr =kn~n' (77)

where ~n = n ° IX., and penalty parameter kn. In the limit as kn-+ 00, the constraint (69) is
recovered, while maintaining the structure described in the Section 4 for the finite element
method. Fonnulations imposing (69) exactly can be easily devised. The finite element
equations are then completely defined with the nominal driving traction defined as
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(78)

with Tn and Tmgiven by (77) and (74), respectively, in terms of the slip ~m = mb·~e and
normal jump ~n = n' (Le' •

5.2. Representative numerical simulations
This section presents a number of representative numerical simulations based on the

new finite element methods proposed herein. The goals are twofold: to show the inde
pendence of these methods on (1) the mesh size, and (2) the mesh alignment. To this
purpose, the simple setting given by the model problem of plane strain J2-flow theory
described in Section 5.1 is considered. In particular, the regularized logarithmic hyperelastic
law (66) is assumed with K = 164.206 and J.l = 80.1938. The yield limit is (Jy = 0.45, with a
(localized) linear softening law (47) and softening modulus 1l = - 5. As described in the
previous sections, the softening is introduced when the localization condition is satisfied
for some N. Condition (68h is implemented in closed-form, resulting in slip-lines bisecting
the principal directions (see Armero and Garikipati (1995)). The discontinuity is propagated
through the mesh as described in Remark 4.3.3, without any predetermined path.

We consider the plane strain tension test as a benchmark problem; see Tvergaard and
Needleman (1984) and references therein for other numerical studies of this problem. The
problem definition is depicted Fig. 3a. A small material imperfection is introduced to trigger
the localization of the flow in this perfectly symmetric situation; the yield limit is reduced
by I% in one element at the lower boundary. The mixed triangle P2 E8 bubble/PI, consisting
of quadratic interpolations of the displacement field with a hierarchic bubble (7 node
triangle), and linear discontinuous pressure interpolation, is considered as the base element
to which the enhanced modes described in Section 4 are added. This element, depicted in
Fig. 3b, was originally proposed in Crouzeix and Raviart (1973) and satisfies the LBB
condition. The motivation for the consideration of this type of elements is the need to avoid
the locking response ofstandard isoparametric elements due to the isochoric plastic response
present in the problem before localization. In this regard, we note that the satisfaction of
the localization condition (68) must be preceded in general by certain amount of plastic
flow; see Armero and Garikipati (1995) for details.

Figure 4 shows the solutions obtained by the proposed enhanced finite elements.
Structured and unstructured meshes are considered, involving from 100 to 768 elements.
The deformed configurations shown in this figure demonstrate the ability of the elements
to simulate the localization mode with a completely general mesh unrelated to the final
solution. The elements shown in gray scale have excited enhanced modes. More importantly,
the load-displacement curves are included for the different simulations in Fig. 5 showing
the independence of the present methods on the mesh size and alignment. The curves for
the four different meshes literally overlap.

Standard Galerkin methods not only show the well-known strong dependence on the
mesh size, but also strong dependence on mesh alignment. Good resolution can be obtained
with aligned meshes, but in general they are too stiff when general unstructured meshes are
considered. Figure 6 shows the solution obtained by the mixed triangle of Fig. 3b with and
without modes, and an unstructured 100 element mesh. The perfectly plastic limit is
effectively recovered by setting 1l = _10- 4

; for the element without modes, a continuum
(non-localized) linear softening law is considered with this modulus. While the enhanced
formulation is able to capture the localization of the strains, the standard mixed triangle
leads to a solution involving diffuse necking. In both cases, the material imperfection is
present, but due to the overly stiff response of the mixed element without the modes, the
localization mode is lost in this case.

6. CONCLUDING REMARKS

An analysis of strong discontinuities has been presented in the fully nonlinear context
of multiplicative finite strain plasticity with strain-softening. This analysis shows that
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a) b)

c) d)

Fig. 4. Tension test. Deformed configurations at an imposed displacement of 0.75 computed
with the P2EBbubblefPI triangle with enhanced modes: (a) structured mesh, 192 elements; (b)
unstructured mesh, 100 elements; (c) structured mesh, 768 elements; (d) unstructured mesh, 254

elements. The elements with excited enhanced localization modes are shown in gray.

Unstructured mesh, 100 elements -

Unstructured mesh, 254 elements - 

Structured mesh, 192 elements _.

Structured mesh, 768 elements - - .

1.6

1.4

1.2

I:l 1.0
.9....
u

'" 0.8Q)...

~ 0.6

0.4

0.2

0
0 0.05 0.10 0.15 0.20 0.25 0.30

Tip displacement

Fig. 5. Tension test. Load-displacement curves for the different solutions shown in Fig. 4. The
independence of the solution on the mesh size and mesh alignment is readily apparent.

solutions involving this type of discontinuities can be completely characterized by making
formal sense of the continuum relations in distributional form. In particular, a distributional
softening modulus has been obtained for the localization mode. Physically, the softening
response of the material is localized along the discontinuity.
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a) b)

Fig. 6. Tension test. Comparison of the solutions obtained with the P2 liB bubble/PI triangle (a)
with, and (b) without enhanced localization modes, for an unstructured mesh (100 element) in the
perfect plasticity limit (H = 10-2

). Relative slip = 0.45. The overly stiff (and non-objective) response
of standard mixed methods is to be contrasted with the enhanced element. The elements with excited

enhanced localization modes are shown in gray.

This analysis is a first formal attempt to extend to the finite strain range some well
known results of discontinuous solutions in infinitesimal plasticity. A complete math
ematical description of the results and ideas presented herein are currently under inves
tigation. In fact, a complete existence and regularity theory for finite plasticity is still lacking
and appears to be a very challenging task.

In addition, the introduction of the localization mode identified in the analysis in finite
element interpolations through the enhanced strain methodology has led to finite element
formulations especially suited for this class of problems. These methods lead to a sharp
resolution of strong discontinuities, and have shown not only their independence to the
mesh size, but also a strong insensitivity to the mesh alignment. These properties have been
accomplished by the introduction of singular distributions (delta functions) in the finite
element spaces, without any kind of smoothing or regularization. The final numerical
implementation does not require in this manner any numerical ad-hoc (regularization)
parameter.
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